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Towards an exit wave in closed analytical form
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Abstract

A simple but suf®ciently accurate expression is obtained
for the exit wave of a crystal in zone-axis orientation.
The exit wave at each atom column can be parametrized
with only one parameter, which is a function of the
projected `weight' of the column.

1. Introduction

If an analytical expression could be found for the exit
wave of a crystal in a zone-axis orientation in terms of
the projected structure of the object, this could have
enormous advantages for quantitative high-resolution
electron microscopy. Firstly, it would allow one to
`invert' to some extent the exit wave into a projected
structure model, which can be used as a seed for further
quantitative re®nement. Secondly, it would speed up
enormously the quantitative re®nement procedure. A
quantitative re®nement consists of searching for the best
®t between simulated and experimental data sets
(images and/or diffraction patterns) in which all model
parameters (atom coordinates, specimen orientation
and thickness, imaging parameters etc.) are varied. In
fact, one searches for a global optimum in a high-
dimensional space. This search is performed in an
iterative way in which each step requires full calculation
of the dynamical electron diffraction in the crystal. At
present, this is performed with standard multislice
programs (e.g. Zandbergen et al., 1997), which, if re-
peated thousands of times, presents a real bottleneck for
¯exible applications.

A simpler expression for the exit wave, and hence for
the image and the diffraction pattern, allows not only a
drastic increase in speed of calculation but also calcu-
lation of the change (gradient) of the ®tness function
with respect to change in the parameters in an analytical
and hence more robust way so as to improve the
convergence of the re®nement procedure.

Thus far, no attempts have been successful in
obtaining an expression for the exit wave in closed
analytical form except for very thin objects (phase-
object approximation) and for crystals in two- or three-

beam orientations but neither approach is of practical
value for realistic high-resolution situations.

The reason for this is that most of the theories and/or
simulation programs used to date are based on plane-
wave expansions for the electron wave®eld. This
approach stems from X-ray work and is only suitable if
the scattering is weak. However, in a zone-axis orien-
tation, where the projected crystal structure is simplest,
the atom cores exactly superimpose along the beam
direction and hence the scattering is very dynamical. It
would be much better to look for a more appropriate
quantum-mechanical basis to describe the dynamical
wave®eld.

In this work, we try to exploit the fact that, in a zone-
axis orientation, the electrons are trapped in the elec-
trostatic potential of the atom columns parallel to the
electron beam. Therefore, we will expand the wave®eld
in eigenstates of the Hamiltonian of the projected atom
columns. As has been observed before, the dynamical
motion of the electron in a column can be expressed
primarily in terms of the 1s bound state of the two-
dimensional projected potential of the columns.

Furthermore, it has already been observed that for a
variety of atom column types the 1s bound state has a
simple scaling behaviour.

In this work, we try to parametrize this 1s state and
hence the exit wave at the corresponding column in
terms of a minimal number of parameters. Ideally, the
exit wave of a column should be characterized by three
parameters, two coordinates of the projection of the
column and one parameter related to the `weight' of the
projected column. However, it is known that high-
energy electrons only see an averaged potential along
their path and are not sensitive to potential variations
along this path. Hence, one can expect to obtain only
projected information and ambiguity about the types
and distances of atoms along a column can only be
removed by combining information from different zone-
axis orientations.

Finally, we can tolerate a precision in an analytical
exit-wave expression of the order of say 5% since many
other sources of error such as noise, inaccuracy of atom
potentials, inelastic scattering, thermal effects etc. are at
least of the same order of magnitude.
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Fig. 1. Scaled 1s wavefunction (normalized) calculated using Doyle±Turner (1968) parameters for the potential: (a) for different types of atoms;
(b) for gold but with different Debye±Waller factors.
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2. Theory

It has been shown by Van Dyck & Op de Beeck (1996)
that for a crystal in a zone-axis orientation the exit wave
for one particular column located at the origin can be
approximated as

 �r; z� � 1� 's�r��exp�ÿi�Eskz=E0� ÿ 1�; �1�
where 's(r) is the 1s eigenstate of the Hamiltonian H(r)
of the projected column potential.

H�r�'s�r� � Es's�r�: �2�
r is the vector in the two-dimensional plane perpendi-
cular to the electron beam, k is the electron wavevector,
E0 the incident electron energy and z the crystal thick-
ness. This approach goes back to the work of Howie
(1966) and has been elaborated by Fujimoto (1978).

A two-dimensional potential of this form has one
strongly bound state, which, by analogy to atoms, is
called the 1s state. Note that the other states are not
neglected but for thin crystals will not build up and are
incorporated in the term 1 in (1). If needed, we can
improve (1) so as to account for these states up to ®rst
order (Van Dyck & Op de Beeck, 1996). The 1s state is
radially symmetric and can be expressed as a function of
the radial coordinate r.

By comparing the 1s states calculated for various
atom column types, we have observed empirically that
all the 1s states obey an empirical scaling behaviour
(Van Dyck & Op de Beeck, 1996):

'E�r� � '0�E1=2r� �3�
and we further observed that

E / Z=d5=4 �4�
or, for the extinction distance � (periodicity along Z),

� / 1=E / d5=4=Z; �5�
where Z is the mass of the atoms along the column and d
is the repeat distance. We can write (2) in an abbreviated
notation as

�r � VE�'E � E'E �6�
with r the Laplacian operator in the plane, VE the
projected potential and E the `eigenenergy'. Assuming
'E to be radially symmetric, we have for (6) in polar
coordinates

1

r

d

dr
r

d'E

dr
� VE'E � E'E; �7�

or, if we put

rE1=2 � r0; �8�
1
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� �
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Since we have found empirically that

Fig. 2. Extinction distance along the atom column (1=Es), plotted
against (a) 1=Z, (b) B, and (c) d5=4. Slight changes in (b) and (c)
are due to changes of the accuracy of the calculation method (see
text).
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'E�r0� � '0�rE1=2� �10�
is independent of E, we can conclude that

�1=E�VE�r0=E1=2� � V0�r0� �11�
or

VE�r� � EV0�rE1=2�: �12�
If we assume that V0(r0) is approximately a Gaussian
function

V0�r0� � U0 exp�ÿr02=r2
0�; �13�

where U0 and r0 are constants, we have from (12)

VE�r� � U0E exp�ÿEr2=r2
0�: �14�

If we now introduce a temperature factor B (Debye±
Waller factor), VE(r) is convoluted with a Gaussian
spread function proportional to exp�ÿ4�2r2=B�. The
energy is then expected to become, using (4),

E � Z=d5=4

�� BZ=d5=4
�15�

and the extinction distance becomes

� / ��d5=4=Z� � B; �16�
where � is a constant. For large factors, � will be deter-
mined by B; for small B factors, � will be determined by
d5=4=Z.

3. Results

From the foregoing, we expect that the exit wave at a
particular column is radially symmetric and has a
universal shape, with only one extra parameter E (or �)
related to the projected `weight' of the column.

From ®tting with experimentally obtained exit waves,
it should thus be possible to derive accurate values for
the column positions and reasonable values for their
weights. The extinction distance (16) is related in a
simple way to Z, d and B but does not allow
unambiguous determination of these values individually
without prior knowledge.

Fig. 1 shows a superposition of scaled 's�E1=2r� func-
tions obtained from various types of columns. It is clear
that within an acceptably small error all functions are
identical. Fig. 2 shows (a) � as a function of 1=Z, (b) � as
a function of B, and (c) � as a function of d5=4. In all three
cases, the functional relation is close to linear, which
con®rms the empirical relation (16).

Note that to calculate the eigenvalues and wave-
functions of 1s eigenstates one can use different
methods, such as the standard matrix method for both
the eigenvalue and wavefunction, the standard multi-
slice method for the eigenvalue through measuring the
periodicity of intensity oscillation along Z (but not for
the eigenfunction) and the Bessel-function method (Op
de Beeck & Van Dyck, 1995) for both the eigenvalue
and wavefunction. However, these methods become
very time-consuming when used to investigate the
relation (16) and to obtain the accurate 1s eigenfunc-
tions of heavy columns, which are sharply peaked and
therefore need very ®ne sampling intervals (large
number of beams) to describe them. We have found a
fast Fourier transform method for this purpose, which
works with errors less than 5% for light columns, 1% for
heavy columns and 10ÿ4 for very heavy columns so that
the sharply peaked universal 1s wavefunctions can be
obtained accurately. We will publish this calculation
method in a separate paper.

4. Conclusions

We have established a simple analytical expression for
the exit wave of a crystal in a zone-axis orientation. The
exit wave at each column can be parametrized with only
one parameter which is related to the `weight' of the
column and which is a simple function of the atom
number, atom distance in the column and temperature
factor.

These preliminary results have now to be tested in
dynamical calculations for realistic crystals, and possibly
extended so as to include small tilts from the zone axis.

One of the authors (JHC) is grateful to Professors J.
Van Landuyt and G. Van Tendeloo for their enduring
support and IUAP 4/10 (Belgium) for ®nancial support.
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